Коэффициент теплопроводности керамического кирпича


В статье мы постараемся как можно больше узнать об облицовочном кирпиче: его физических характеристиках, способах производства и особенностях применения. Мы выясним, насколько хороши его теплоизоляционные и прочностные качества, и узнаем, как можно оформить фасад с его помощью.

Что это такое

Облицовочный, или лицевой — это кирпич, предназначенный для наружной отделки здания. От разнообразных видов декоративной плитки он отличается тем, что не навешивается на несущие нагрузку капитальные стены, а является их полноценным элементом.

Требования

Они вытекают из области применения материала.

  • Декоративные качества материала должны быть на высоком уровне. Предполагается, что он станет служить украшением фасада здания.

Уточнение: обычно тщательно обрабатывается лишь одна или две грани изделия. Есть ли смысл придавать всему кирпичу сложный рельеф и красивую окраску, если они все равно будут скрыты кладкой?


  • Высокая механическая прочность требуется уже потому, что нижним рядам кладки предстоит выдержать массу верхних. Кроме того, облицовка здания неизбежно подвергается постоянным ударам, трению и ветровой эрозии.
  • Низкое водопоглощение приветствуется. Необходимо, чтобы осадки не насыщали стену сыростью: влажная стена проводит больше тепла; к тому же кристаллизация воды при заморозках многократно ускоряет разрушение материала.
  • Высокая морозостойкость позволит кирпичу выдержать много циклов замерзания и оттаивания. Если строительный кирпич в толще стены может прогреваться теплом жилого помещения, то наружная часть кладки неизбежно будет охлаждаться до температуры окружающей среды.
  • Устойчивость окраски сохранит внешний вид фасада неизменным в течение многих лет.

Технологии производства

Лицевой пустотелый кирпич может производиться несколькими способами.

  • Керамический отличается от привычного нам красного полнотелого кирпича только и исключительно качеством обработки одной или нескольких поверхностей; кроме того, в глину могут добавляться минеральные красители, меняющие цвет изделия.
  • Глазурованный отличается тем, что перед обжигом на его лицевые грани наносится смесь каолина, кварца и полевого шпата. В процессе обжига на поверхности образуется исключительно прочный глянцевый слой, непроницаемый для влаги.
  • Клинкерный кирпич отличается высокой температурой обжига, при которой частицы глины спекаются особенно надежно. Полученный материал способен выдержать в 2-3 раза большее давление на сжатие по сравнению с обыкновенной керамикой.

  • Производство гиперпрессованного кирпича начинается с получения цементно-минеральной смеси,  которая затем прессуется и выдерживается в пропарочной камере. Прочностью этот тип облицовочного материала мало уступает клинкеру; поскольку сырье содержит очень мало воды, в процессе обжига в нем практически не образуется полостей.
  • Силикатный кирпич — бедный родственник среди конкурирующих решений. Единственное его преимущество — невысокая цена; механическая прочность материала невысока, а устойчивость к сырости оставляет желать лучшего. Строго говоря, от рядового силикатного кирпича лицевой отличается лишь обработкой фронтальной поверхности и, иногда, цветом.

Технология производства традиционна для этого вида строительных материалов: смесь кварцевого песка и извести формуется под давлением и пропаривается в автоклаве.

Обратите внимание:  независимо от технологии производства, лицевой кирпич в большинстве случаев изготавливается пустотелым. Цель — сделать его более легким, дешевым и менее теплопроводным.

Физические свойства

Они во многом определяются способом, которым произведен изучаемый нами материал.

Теплопроводность

Начнем с лирического отступления.

Теплопроводность облицовочного кирпича сильно зависит от степени его пустотности.  При пустотности, равной 20 процентам, и при 40-процентной материал будет проводить весьма разное количество тепла.

Мы приведем коэффициент теплопроводности на облицовочный кирпич без пустот; полости уменьшат его на 10-30 процентов.


  • Силикатный кирпич характеризуется теплопроводностью в 0,7 Вт/м*К.
  • Керамический проводит тепло в зависимости от марки: чем прочнее (и, соответственно, плотнее)  материал, тем выше его теплопроводность. Справочники предлагают значения от 0,5 до 0,8 Вт/м*К. Глазурованная поверхность, как нетрудно догадаться, никак не влияет на теплоизоляционные качества.
  • Клинкерный кирпич благодаря лучшему спеканию и несколько больше плотности проводит тепло лучше — 0,9 Вт/м*К.
  • Гиперпрессованный облицовочный материал, как мы помним, имеет минимум полостей и весьма прочен. На теплоизолирующих качествах это сказывается плачевно: 1 — 1,1 Вт/м*К.

Прочность

Сравнительная прочность всех материалов позволяет расположить их по убыванию в таком порядке:

  1. Клинкерный;
  2. Гиперпрессованный;
  3. Керамический;
  4. Силикатный.

Пустотность может внести коррективы в список. Точное значение прочности заложено в маркировке изделия: средняя прочность на сжатие кирпича марки М 100 равна 10 МПа, кликера марки М 1000 — 100 МПа.

Плотность

В общем случае она максимальна у полнотелого гиперпрессованного кирпича; затем идут в порядке убывания силикатный, клинкерный и керамический. Диапазон значений — от 1600 до 2400 кг/м3. Конкретное значение плотности пустотного облицовочного изделия зависит от процента полостей.

Способы кладки

Если вы планируете облицевать фасад с помощью кирпича своими руками, инструкция зависит от ваших целей. Возможны два сценария.


  1. Цельная кирпичная стена в два, два с половиной или три кирпича включает выделяющийся отделкой наружный слой. В этом случае способ кладки ничем не отличается от традиционного: с интервалом в четыре — пять рядов кладутся тычковые ряды, обеспечивая надежную перевязку слоев стены. Разумеется, тычком кладут облицовочный кирпич с обработанными торцами.
  1. Облицовка может представлять собой самостоятельную стену в полкирпича, с промежутком от основной на 10-20 сантиметров и стоящую на общем с ней фундаменте. Полость между стенами заполняется утеплителем; цельность конструкции обеспечивается анкеровкой: между горизонтальными рядами обеих стен, связывая их, закладывается рифленая арматура или оцинкованный перфорированный профиль.

Вывод

Как видите, под общим названием скрывается несколько материалов с сильно отличающимися физическими свойствами. Как обычно, в представленном видео в этой статье вы найдете дополнительную информацию по данной теме. Успехов в строительстве!


klademkirpich.ru

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:


  1. Пористость — наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор — малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность — при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность — значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

где, λо — коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

b — справочная величина температурного коэффициента;

t — температура.

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление — нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

H=R/λ, (2)

где, H — толщина слоя, м;

R — сопротивление теплопередаче, (м2*°С)/Вт;

λ — коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

  • ограждающая конструкция имеет однородное монолитное строение;
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 — Строительная климатология;
  • СНиП 23-02-2003 — Тепловая защита зданий;
  • СП 23-101-2004 — Проектирование тепловой защиты зданий.

Теплопроводность материалов: параметры

Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Значения коэффициентов теплопроводности сведены в таблицу 1:

Таблица 1


Материал Коэффициент теплопроводности, Вт/(м*°С).
Пенобетон (0,08 — 0,29) — в зависимости от плотности
Древесина ели и сосны (0,1 — 0,15) — поперек волокон
0,18 — вдоль волокон
Керамзитобетон (0,14-0,66) — в зависимости от плотности
Кирпич керамический пустотелый 0,35 — 0,41
Кирпич красный глиняный 0,56
Кирпич силикатный 0,7
Железобетон 1,29

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.


Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы — это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Теплопроводность при строительстве

При проектировании и производстве строительных работ необходимо учитывать возможные пути теплопотерь:

  • 30-40% потерь тепла приходится на поверхность стен;
  • 20-30% — через межэтажные перекрытия и крышу;
  • около 20% потерь приходится на поверхность, занимаемую оконными и дверными проемами;
  • приблизительно 10% тепла уходит из помещения через плохо утепленные полы.

Важным фактором при учете теплопроводности в строительстве является обеспечение надлежащей ветро- и пароизоляции. В наибольшей степени это справедливо для пористых утеплителей. Т.е. при ограничении доступа влаги внутрь конструкций (как извне, так и снаружи) сопротивление теплопередачи будет выше. Утеплитель будет более эффективно работать, соответственно, потребуется меньшая толщина конструкций.


В идеале стены и перекрытия должны выполняться из теплоизоляционных материалов. Однако они обладают низкой конструкционной прочностью, что ограничивает широту их применения. Возникает необходимость выполнять основные несущие конструкции из кирпича, дерева, пенобетонных блоков и т.п.

Наиболее распространенным вариантом конструкций домов, встречающимся на практике, является комбинация несущей конструкции и теплоизоляции.

Здесь можно различить:

  1. Каркасный вариант строительства — основной каркас, обеспечивающий пространственную жесткость, выполняется из деревянных досок или брусьев. Утеплитель укладывается в межстоечное пространство. В некоторых случаях для достижения требуемых показателей по энергоэффективности осуществляется дополнительное утепление снаружи каркаса.
  2. Возведение стен дома из кирпича, пористых бетонных блоков, дерева — утепление осуществляется по наружной поверхности. Слой утеплителя компенсирует избыточную теплопроводность основного стенового материала. С другой стороны материал основной стены несет на себе нагрузки, компенсируя малую механическую прочность утеплителя.

Аналогичные закономерности будут справедливы при возведении межэтажных перекрытий и кровельных конструкций.

Таким образом, используя комбинацию материалов с требуемыми значениями коэффициентов теплопроводности, можно получить оптимальные по свойствам и толщине ограждающие конструкции здания.


ostroymaterialah.ru

Явление теплопроводности

Для того чтобы понять, насколько отличаются друг от друга материалы по теплопроводности, достаточно в холодный день на улице приложить руку поочередно к металлу, кирпичной стене, дереву и, наконец, к куску пенопласта. Однако свойства материалов передавать тепловую энергию – не обязательно плохо.

Теплопроводность кирпича, бетона, дерева рассматриваются в контексте способности материалов сохранять теплоту. Но в некоторых случаях теплоту, напротив, необходимо передать. Это касается, например, кастрюль, сковородок и другой посуды. Хорошая теплопроводность гарантирует, что энергия будет тратится по назначению – на нагрев готовящейся пищи.

В чем измеряется теплопроводность ее физическая сущность

Что такое теплота? Это движение молекул вещества, хаотичное в газе или жидкости, и вибрированное в кристаллических решетках твердых тел. Если металлический прут, помещенный в вакуум, подогреть с одной стороны, атомы металла, получив часть энергии, начнут вибрировать в гнездах решетки. Эта вибрация станет передаваться от атома к атому, благодаря чему энергия постепенно распределится равномерно на всю массу. У одних материалов, например, у меди, этот процесс занимает секунды, у других же на то, чтобы тепло равномерно «растеклось» по всему объему, потребуются часы. Чем выше разность температур между холодным и горячим участками, тем быстрее идет передача тепла. Кстати, процесс ускорится при увеличении площади контакта.

Коэффициент теплопроводности (х) измеряется в Вт/(м∙К). Он показывает сколько тепловой энергии в Ваттах будет передаваться через один квадратный метр при разности температур в один градус.

Полнотелый керамический кирпич

Каменные строения отличаются прочностью и долговечностью. В каменных замках гарнизоны выдерживали иногда продолжавшиеся годами осады. Строения из камня не боятся огня, камень не подвержен процессам гниения, благодаря чему возраст некоторых сооружений превышает тысячу лет. Однако зависеть от случайной формы булыжника строители не хотели. И тогда на сцене истории появился керамический кирпич из глины – древнейший строительный материал, созданный руками человека.

Теплопроводность керамического кирпича – величина не постоянная, в лабораторных условиях абсолютно сухой материал дает значение 0,56 Вт/(м∙К). Однако реальные условия эксплуатации далеки от лабораторных, есть множество факторов, влияющих на теплопроводность строительного материала:

  • влажность: чем суше материал, тем лучше он держит тепло;
  • толщина и состав цементных швов: цемент лучше проводит тепло, слишком толстые швы будут служить дополнительными мостиками промерзания;
  • структура самого кирпича: содержание песка, качество обжига, наличие пор.

В реальных условиях эксплуатации коэффициент теплопроводности кирпича принимают в пределах 0,65 – 0,69 Вт/(м∙К). Однако каждый год рынок прирастает не известными ранее материалами с улучшенными эксплуатационными качествами.

Пористая керамика

Сравнительно новый строительный материал. Пустотелый кирпич отличается от полнотелого собрата меньшей материалоемкостью в производстве, меньшим удельным весом (как следствие – уменьшение затрат на погрузочно-разгрузочные работы и удобство кладки) и меньшей теплопроводностью.

Худшая теплопроводность пустотелого кирпича является следствием наличия воздушных карманов (теплопроводность воздуха ничтожна и составляет в среднем 0,024 Вт/(м∙К)). В зависимости от марки кирпича и качества изготовления показатель варьируется в пределах от 0,42 до 0,468 Вт/(м∙К). Надо сказать, что из-за наличия воздушных полостей кирпич теряет в прочности, однако многие в частном строительстве, когда прочность важнее тепла, просто заливают все поры жидким бетоном.

Силикатный кирпич

Строительный материал из обожженной глины не так прост в производстве, как может показаться на первый взгляд. Массовое производство выдает продукт с весьма сомнительными прочностными характеристиками и ограниченным числом циклов замораживания-размораживания. Изготовление же кирпича, способного противостоять атмосферному воздействию сотни лет, обходится недешево.

Одним из решений проблемы стал новый материал, изготовленный из смеси песка и извести в паровой «бане» при влажности около 100%, и температуре около +200 °C. Теплопроводность силикатного кирпича очень сильно зависит от марки. Он, точно так же как и керамический, бывает пористым. Когда стена не является несущей, а задача ее состоит лишь в том, чтобы максимально удержать тепло, применяется щелевой кирпич с коэффициентом 0,4 Вт/(м∙К). Теплопроводность полнотелого кирпича, естественно, выше до 1,3 Вт/(м∙К), зато на порядок лучше его прочность.

Газосиликат и вспененный бетон

С развитием технологий стало возможным изготавливать вспененные материалы. Применительно к кирпичу это газосиликат и вспененный бетон. Силикатную смесь или бетон вспенивают, в таком виде материал затвердевает, образуя мелкопористую структуру из тонких перегородок.

Благодаря наличию большого количества пустот теплопроводность кирпича из газосиликата всего 0,08 – 0,12 Вт/(м∙К).

Вспененный бетон держит тепло чуть похуже: 0,15 – 0,21 Вт/(м∙К), зато строения из него долговечнее, он способен нести нагрузку в 1,5 раза больше той, что можно «доверить» газосиликату.

Теплопроводность разных видов кирпича

Как уже говорилось, теплопроводность кирпича в реальных условиях сильно отличается от табличных значений. В приведенной ниже таблице указаны не только значения теплопроводности для разных видов этого строительного материала, но и конструкций из них.

Снижение теплопроводности

В настоящее время в строительстве сохранение в здании тепла редко доверяется одному виду материала. Снижать теплопроводность кирпича, насыщая его воздушными карманами, делая пористым, можно до определенного предела. Воздушный, чрезмерно легкий пористый строительный материал не сможет держать даже свой собственный вес, не говоря уже об использовании его в создании многоэтажных конструкций.

Чаще всего для утепления зданий применяется комбинация строительных материалов. Задача одних – обеспечивать прочность конструкций, ее долговечность, в то время как другие гарантируют сохранение тепла. Такое решение более рационально, с точки зрения как технологии строительства, так и экономики. Пример: использование в стене всего лишь 5 см пенопласта или пеноплекса дает такой же эффект для сохранения тепловой энергии как «лишних» 60 см пенобетона или газосиликата.

fb.ru

Краткое описание закона Фурье

Теплопроводность, как и водопоглощение или морозостойкость кирпича, играет очень важную роль при выборе строительного материала, необходимого для возведения несущих стен, каких-либо облицовочных работ, кирпичной кладки при устройстве межкомнатных перегородок. Изделие не только позволяет создать неповторимый стиль, но и обеспечивает тепло и уют в доме. Этот фактор является важным при его выборе.

Коэффициент теплопроводности кирпичной кладки Закон Фурье при расчете теплопроводности.

Показатели, позволяющие анализировать тепловой поток, находятся под влиянием различных температур. Это объясняется постепенным переходом тепловой энергии из горячего состояния в холодное. Если температура довольно высокая, то данный процесс можно наблюдать открыто. При высокоинтенсивной передаче тепла наблюдается градация в уровне температур.

Чтобы глубже исследовать теплопроводность и тепловой поток, учитывая площадь поперечного сечения, ученый Фурье открыл закон, который показывает, по каким причинам материалы способны прекрасно задерживать тепло, улучшая свою изоляцию. Степень переноса теплоты может быть обозначена специальным коэффициентом (КТ) — λ.

Значение тепловой энергии измеряется в таких единицах, как ватт, сокращенно Вт. Этот показатель способен уменьшать свой уровень на 1°С в результате прохождения расстояния в 1 мм при температурном различии. В процессе лабораторных исследований Фурье было обнаружено, что чем меньше коэффициент теплопроводности, тем выше уровень сохранения тепла строительным материалом, поэтому его можно отнести к более теплому.

Данный показатель, который важен в строительстве, в наибольшей степени обусловлен плотностью строительной продукции. Если уровень значения плотности материала понижается, это приводит к снижению его теплового показателя. Для плотных тяжелых экземпляров характерно повышенное значение коэффициента.

Если строительный материал обладает более легким весом и меньшей прочностью, то его величина является небольшой. Коэффициент, который зависит от плотности строительного материала, находится под влиянием таких характеристик, как водопоглощение кирпича и его морозостойкость.

Уровень показателя силикатных изделий

Коэффициент теплопроводности кирпичной кладки Теплопроводность основных видов кирпичей, и другие характеристики кирпича.

Сфера применения силиката зависит от его качественных характеристик. Сюда входят теплопроводность, водопоглощение и морозостойкость кирпича. Силикат обладает повышенной склонностью к водопоглощению, поэтому он не используется при кладке фундаментов, подвалов или цоколей, так как эти сооружения имеют высокий уровень влажности.

Сухой силикатный материал обладает теплопроводностью (Т), составляющей 0,8 Вт/м*К. Керамические изделия имеют более высокую величину данного параметра, поэтому Т кладки сооружений из них составляет 0,9 Вт/м*К, что на 0,2 Вт/м*К больше, чем в первом случае. Показатель, составляющий 0,35-0,70 Вт/(м°С), а также средняя плотность сухого силикатного кирпича находятся в линейной зависимости, поэтому данная величина не зависит от количества и расположения пустот.

Силикатные изделия имеют значение теплового показателя переноса энергии меньше, чем керамические, поэтому они применяются для отделки фасадов. Для получения теплоэффективных стен применяется многопустотный силикатный кирпич, а также камень. Их плотность не более 1450 кг/м³. Эффект достигается только при аккуратном ведении кирпичной кладки, предполагающей использование нежирного кладочного раствора, который наносится тонким слоем и имеет плотность не более 1800 кг/м³. Раствор не должен заполнять пустоты в изделии.

Величина показателя красного кирпича

Для полнотелого красного кирпича характерна самая низкая способность к сохранению тепла, составляющая 0,6-0,8 Вт/м*К. По этой причине возводить энергоэкономичные сооружения целесообразно из пустотелых изделий. Их показатели теплопроводности намного ниже и составляют около 0,56 Вт/м*К.

Теплопроводность кирпича зависит не только от производственной технологии. Этот показатель находится в зависимости от множества факторов: влажности, объемного веса, пористости (размера пор материала). Достаточная плотность и пустотность этого изделия, составляющая 40-50%, соответствует показателю Т, равному 0,2-0,3 Вт/м*К. При этом толщина стен должна быть значительно меньше, чем в постройках из силиката.

Коэффициент теплопроводности, единица измерения которого исчисляется в ваттах, определяет количество тепла, способного проникнуть через кирпичную стену, имеющую метровую толщину.

Разница температуры должна составлять в 1°C по обе стороны стены. Чем выше данное значение, тем хуже характеристики коэффициента.

Наиболее важным свойством шамотного кирпича является тепловой эффект, что следует учитывать в процессе кладки печей и каминов. Чтобы обеспечить тепло в жилье, необходимо выбирать строительные материалы, обладающие низким коэффициентом теплопроводности, единицей измерения которого являются Вт/м°С или Вт/м*К.

Заключение

Показатель указывает на то, до какой степени может сохраняться тепло кирпичных стен сооружения. Это свойство объясняет, как данный материал не только проводит, но и передает тепло. Определить этот показатель можно с помощью коэффициента теплопроводности кирпича, который был получен на основе лабораторных исследований ученых.

Еще статьи по теме:

Теплопроводность кирпичной стены

Коэффициент теплопроводности кирпичной кладки Теплопроводность – один из важнейших показателей, характеризующих качество возводимого сооружения. И это неудивительно: ведь от этого коэффициента зависят не только затраты на отопление помещений, но и степень комфортности проживания в доме. Также в строительных расчетах часто фигурирует коэффициент теплосопротивления (сопротивление теплоотдаче), обратный теплопроводности (чем выше первый, тем ниже второй, и наоборот).

Теплопроводность сооружения зависит от показателей используемого вида кирпича, от параметров раствора, типа кладки, применяемых строительных технологий и утепляющих материалов.

Коэффициент теплопроводности кирпичей

Данный коэффициент обозначается буквой λ и выражается в W/(m*K).

Показатель λ достаточно широко варьируется, в зависимости от типа кирпичей и способа их изготовления. В основном, на данный коэффициент влияют материал кирпича (клинкерный, силикатный, керамический) и относительное содержание пустот. До 13% пустотности кирпичи считаются полнотелыми, выше – пустотелыми. По уменьшению коэффициента λ линейка строительной продукции будет выглядеть следующим образом:

  1. Клинкерный кирпич λ= от 0,8 до 0,9. Этот тип стройматериалов не предназначен для строительства утеплённых стен и чаще используется для изготовления полов и мощёных дорог.
  2. Силикатный кирпич полнотелого типа λ= от 0,7 до 0,8. Чуть ниже, чем у предыдущего типа, но строительство стены с его использованием требует серьёзных мер по утеплению.
  3. Керамический кирпич полнотелый λ= от 0,5 до 0,8 (в зависимости от сорта).
  4. Силикатный, с техническими пустотами λ= 0,66.
  5. Керамический кирпич пустотелого исполнения λ= 0,57.
  6. Керамический кирпич щелевого типа λ= 0,4.
  7. Силикатный кирпич щелевого типа – показатель λ аналогичен керамическому щелевому (0,4).
  8. Керамический поризованный λ= 0,22.
  9. Тёплая керамика λ= 0,11. Имея отличные показатели теплосопротивления, тёплая керамика уступает прочим видам кирпичной продукции по прочности, и поэтому применение её ограничено.

Важно при расчёте также учитывать, что для различных климатических регионов сопротивление теплоотдаче материалов будут варьироваться, в достаточно широких пределах Информацию о соотнесении теплоотдачи с климатическими параметрами, можно почерпнуть в СНиПе 23-02-2003.

Теплопроводность кладки

Теплосопротивление кирпичей является важнейшим коэффициентом и в ряде случаев является определяющим параметром при проектировании здания и выбора кладки. Вместе с тем, сопротивлениеКоэффициент теплопроводности кирпичной кладки теплоотдачи сооружения зависит не только от показателя λ используемых кирпичей, но и от применяемого строительного раствора.

Наиболее частым является случай, когда теплосопротивление раствора существенно ниже, чем сопротивление кирпича.

Так, коэффициент теплоотдачи раствора на основе цемента и песка равен 0,93 W/(m*K), а цементно-шлакового раствора – 0,64.

Путем суммирования коэффициентов сопротивления теплоотдаче кирпича и раствора разработаны специальные таблицы коэффициента теплопередачи, которые можно посмотреть в ГОСТе 530-2007. Ниже приведена выдержка из таблицы:

Таблица – Теплопроводность кладки

Расчет стены

Для того, чтобы использовать коэффициент теплосопротивления кирпичной стенки на практике, необходимо воспользоваться следующей формулой:

r = (толщина кладки, м)/(теплоотдача, W/(m * K)),

где r – сопротивление теплоотдаче кирпичной стены. При расчетах также необходимо учитывать степень влажности помещения и климатический регион.

Уменьшение коэффициента теплоотдачи стены

В ряде случаев коэффициент λ оставляет желать много лучшего. К тому же нарушение технологии строительства может привести к изменению теплоотдачи в большую сторону. Если применять жидкий раствор при возведении стены из щелевого кирпича, то связующий материал проникнет в пустоты и отрицательно скажется на показателях теплосбережения (сопротивление теплопередаче уменьшится).

Что делать, чтобы увеличить сопротивление теплоотдаче?

Методы уменьшения теплопередачи стены:

  1. Применение более энергосберегающих материалов (кирпичей с большей степенью пустотности).
  2. При строительстве из щелевого кирпича применять густой раствор.
  3. Прокладывание во внутреннем слое теплоизолирующих материалов. На рынке представлен огромный выбор теплоизоляции. Из наиболее популярных можно назвать стекло- и минераловатные материалы, пенополистирол, керамзит и другие. При применении утеплителей необходимо обеспечить пароизоляцию стены, чтобы избежать разрушения материалов.
  4. Оштукатуривание поверхности.

Похожие статьи

Коэффициент теплопроводности кирпичной кладки Отсечная гидроизоляция кирпичных стен

Коэффициент теплопроводности кирпичной кладки Как сделать кирпичную стену в квартире

Коэффициент теплопроводности кирпичной кладки Расчет толщины утеплителя для кирпичной стены

О теплотехнических требованиях в ГОСТ 530-2007 «Кирпич и камень керамические. Общие технические условия»

Объем выпуска пустотелых керамических изделий в России стал составлять около 80%. Значительно расширена номенклатура эффективных керамических изделий, в том числе из пористой керамики. Оборудование, используемое для производства пустотелого кирпича и камня в основном импортное, приобретение которого началось в первые годы перестроечного периода. В кирпичах и камнях допустимые размеры щелевых пустот увеличили с 12 до 16 мм, диаметр вертикальных цилиндрических пустот и размер стороны квадратных пустот с 16 до 20 мм [1]. Увеличенные размеры пустот были введены в ГОСТ 530-95 [2]. Одновременно Госстроем России планировалось поручить научно-исследовательским институтам совместно со строителями разработать новые технологии кладки, исключающие заполнение пустот раствором, подобные зарубежным.

Поскольку работа над новыми технологиями не завершена, большинство строительных организаций продолжают вести кладку стен по технологии, разработанной для полнотелого кирпича. В результате расход раствора на кладку стен увеличился с 0,20-0,24 м 3 до 0,3-0,4 м 3. что привело к перерасходу цемента на 50-100 кг на один кубический метр кладки, а раствора до 300 кг. Попавший в пустоты раствор снижает теплозащитные свойства стен, не улучшая их прочностные показатели. Экспериментальные исследования температурно-влажностного режима кладок из современного пустотелого кирпича и камня позволили ввести в новый ГОСТ 530-2007 [3] требования, отражающие сложившееся положение в кирпичной промышленности и строительстве. Было бы неправильно вводить обязательные требования, ограничивающие размеры пустот в кирпичах и камнях до 8-12 мм, поскольку это повлекло бы за собой временную остановку многих предприятий. Вместе с тем избежать заполнения раствором пустот крупнее 12 мм при возведении стен возможно с использованием различных технологических приемов. Принятое решение в ГОСТ 530-2007 позволяет заводам и строителям самостоятельно выбирать более приемлемый для них вариант.

Введенные в стандарт новые требования отражают заинтересованность строительной индустрии в объективной оценке теплотехнической эффективности выпускаемой продукции и повышении ее качества. Определение коэффициента теплопроводности кладки из пустотелого кирпича и камня будет осуществляться на фрагменте стены, изготовленном по технологии, исключающей заполнение пустот кладочным раствосом. то есть при одинаковом расходе по сравнению с полнотелым. Такой метод позволяет производителю сопоставлять теплотехническую эффективность своей продукции с выпускаемой на других заводах, поскольку при изготовлении фрагмента стены для испытаний полностью устраняется влияние нарушений технологии ведения кладки стены, часто допускаемых в построечных условиях. Строителям будет практически невозможно перекладывать вину за снижение теплозащитных качеств на кирпичные заводы. Вместе с тем не запрещается проводить испытания пустотелого кирпича и камня на фрагментах стен или непосредственно на стенах эксплуатируемого здания, возведенных по технологии, применяемой для кладки из полнотелого кирпича, о чем должна быть сделана запись в протоколе испытаний. Полученные значения коэффициентов теплопроводности кладок обоими способами могут использоваться при проектировании наружных стен при условии соблюдения соответствующего приведенным коэффициентам теплопроводности технологического регламента, являющегося неотъемлемой частью проекта здания. Данные таблицы Г.2, приведенной в стандарте [3], позволяют производителю принять достаточно обоснованное решение для повышения теплотехнической эффективности керамического стенового или облицовочного кирпича и камня. Для этих целей целесообразно увеличить количество щелевых пустот за счет уменьшения их ширины с перекрытием сквозных теплопроводных керамических диафрагм, повысить пористость черепка. Рациональные размеры и расположение пустот в кирпичах позволит до 30% снизить теплопроводность кладки по сравнению с кладкой, выполненной из кирпича со стандартными размерами пустот, заполненных раствором. Информация о теплотехнических свойствах кладок позволяет и заказчику выбирать устраивающую его продукцию или ставить перед заводом вопрос о выпуске кирпича с уменьшенными размерами пустот и повышенными теплозащитными свойствами. Дополнительные затраты заказчика на освоение производства пустотелого кирпича или камня с улучшенными теплотехническими свойствами окупятся при строительстве за счет снижения расхода цемента до 50-100 кг на один кубический метр кладки стены.

Сложившаяся практика возведения стен из пустотелого теплоэффективного камня и кирпича по той же технологии, что и из полнотелого, снижала конкурентоспособность огнестойкого долговечного конструкционно-теплоизоляционного стенового и лицевого кирпича и камня по сравнению с заведомо худшими материалами в решении проблемы энергосбережения и повышения долговечности наружных стен.

В новый стандарт введено требование, устанавливающее для лицевых керамических кирпичей марку по морозостойкости не ниже Р 50. Такое повышение вызвано качественным изменением физических процессов в наружных стенах с повышенным уровнем теплоизоляции, что привело к большему количеству циклов перехода наружной температуры через 0 o С в облицовочном слое, приводящих к преждевременному разрушению наружных стен.

Для определения морозостойкости кирпича принят метод объемного замораживания, более жесткий по сравнению с методом одностороннего замораживания. Статистически обработанные результаты испытаний, полученные методом одностороннего замораживания, приблизительно на 20% дают превышающие данные, получаемые при объемном замораживании. При разработке метода одностороннего замораживания считалось, что использование метода объемного замораживания приводит к «необоснованной» выбраковке фактически долговечных кирпичей и поэтому к дополнительным технологическим затратам. Предполагали также, что пропускаемый брак при испытаниях методом одностороннего замораживания будет приносить меньше ущерба народному хозяйству, чем выбраковка хорошей продукции при объемном замораживании. Но практика эксплуатации зданий показала, что затраты на ремонт разрушенных участков на фасадах стен с бракованными кирпичами, допущенными в строительство после испытаний методом одностороннего замораживания, значительно превышают затраты на выпуск лицевого кирпича повышенной морозостойкости. При этом создаются и большие трудности при ремонте в подборе цвета лицевого кирпича, что приводит к ухудшению внешнего вида фасада зданий.

Таблица. Теплотехнические свойства кирпичной кладки из пустотелого керамического кирпича

Плотность, кг/м 3

Расход раствора на 1 м 3 кирпичной кладки, м 3

Массовое отношение влаги кирпичной кладки в условиях эксплуатации Б, ω,%

Реализация требований нового межгосударственного стандарта значительно повышает роль производителей пустотелого керамического кирпича и камня во взаимоотношениях с проектировщиками и строителями при решении проблемы повышения теплозащитных качеств и долговечности наружных стен энергоэффективных зданий.

Если бы материалы кирпичной кладки находились при эксплуатации в сухом состоянии, то повышенное содержание цементно-известково-песчаного раствора плотностью 1800 кг/м 3 не приводило бы к ощутимому снижению теплозащитных качеств наружных кирпичных стен, поскольку его коэффициент теплопроводности (λ), равный в этих условиях 0,58 Вт/(м* o С), при одинаковой плотности с керамикой (1800 кг/м 3 ), незначительно превышает ее теплопроводность, равную 0,55 Вт/(м* o С). Но, к сожалению, они в условиях эксплуатации имеют существенно отличающуюся влажность, которая значительно повышает λ стены. Сорбционная влажность цементно-известково-песчаного раствора приближается к 5%, а полнотелого керамического кирпича не превышает 1%.

Сорбционная влажность стеновых и облицовочных материалов из пористой керамики, например, ОАО «Победа ПСР», как правило не превышает 0,6%. Определенная экспериментальным способом эксплуатационная влажность кирпичной кладки на взятых из стен пробах при массовом соотношении материалов (кирпич. раствор), равном 3:1, при относительной влажности наружного воздуха φн = 97%, соответствующей сри в январе месяце (Москва, С.-Петербург), составляет существенно ббльшую величину. Целесообразно отметить преимущество в этом стен из пористой керамики (рис. 1). На ее более низкое значение эксплуатационной влажности повлияла не только особенность структуры пор, но и значительно меньшее количество раствора в стенах из крупноформатных керамических камней. В условиях эксплуатации кирпичная стена набирает наибольшее количество влаги в период максимального влагонакопления, то есть в марте месяце. В этот период кирпич и раствор находятся в сверхсорбционном состоянии. Раствор, набравший влагу, в результате соприкосновения отдает ее порам кирпича, повышая общее влагосодержание кладки. Влага, замкнутая в крупных порах, имеет теплопроводность 0,55 Вт/(м* o С), что почти в 20 раз выше теплопроводности влажного воздуха, равной 0,027 Вт/(м* o С). При сильных же морозах часть накопившейся влаги в известково-цементно-песчаном растворе и в значительно меньшем объеме в керамике превращается в лед, теплопроводность которого составляет 2,3 Вт/(м* o С), что в 4 раза превышает теплопроводность жидкой влаги. Кроме того, образовавшийся лед является барьером в стене на пути уходящего наружу из помещения пара. Это увеличивает влагосодержание материалов и снижает теплозащитные качества стены и морозостойкость лицевого кирпича в облицовочном слое.

Коэффициент теплопроводности кирпичной кладки

По этим причинам, на основании результатов натурных и лабораторных исследований, расчетное (нормативное)значение эксплуатационной влажности кирпичной кладки из плотного кирпича для условий эксплуатации Б принято равным 2%, существенно превышающим максимальное значение сорбционной влажности керамики, равной 1%. Для цементно-известково-песчаного раствора нормативное значение влажности для условий эксплуатации Б принято равным 4%. Оно несколько ниже максимального сорбционного значения, равного 5-6%. Часть влаги из раствора передается примыкающей керамике. Особенно это заметно в кладке из пустотелого кирпича, имеющего более развитую наружную поверхность, соприкасающуюся с влажным раствором, почти в два раза превышающую площадь полнотелого. Да и раствора в кладке из пустотелого кирпича на 30-40% больше, чем в кладке из полнотелого. Поэтому пустотелый кирпич входит в эксплуатационное влажностное состояние за более короткие сроки.

Установление количественных зависимостей влияния кладочного раствора на влажностный режим стен выполнялось в климатической камере на трех фрагментах стен размером 1,8 x 1,8 x 0,38 м, изготовленных в ЦНИИСК им. В.А. Кучеренко совместно с НИИСФ. Кирпичи применялись Голицынского завода с шириной щелей 12, 16 и 20 мм. При изготовлении фрагментов замерялся расход раствора. Аналогичные испытания выполнялись в натурных условиях и в климатической камере на стенах толщиной 640 мм, изготовленных из кирпича с квадратными пустотами 20 x 20 мм. Изготовление фрагментов стен для испытаний выполнялось с фиксированным расходом раствора 0,23 м3, 0,3 и 0,4 м3 на кубический метр кладки квалифицированными каменщиками. Раствор применялся цементно-известково-песчаный плотностью 1800 кг/м 3 состава 1:0,9:8 (цемент:известь:песок) по объему на портландцементе марки 400 с осадкой конуса 9 см. Стены, испытанные в натурных условиях, изготавливались по технологии, разработанной для полнотелого кирпича, то есть с частичным заполнением пустот раствором. Консистенция и плотность раствора не контролировались. Допускалось «омолаживание» раствора, не использованного до обеда, то есть с нарушениями технологического регламента, присущими построечным условиям. Поэтому результаты теплотехнических испытаний кладки стен в натурных условиях существенно отличались в худшую сторону от полученных в климатической камере. Анализ результатов испытаний проводился по данным, полученным в климатической камере. Фрагменты стен были изготовлены из 21-пустотного кирпича плотностью 1000 кг/м 3 и 1400 кг/м 3 с размером пустот 20 x 20 мм. Кладка фрагментов выполнялась на цементно-известково-песчаном растворе плотностью 1800 кг/м 3 с осадкой конуса 9 см. Толщина горизонтальных растворных швов составляла 12 мм, вертикальных 10 мм. В целях сравнения теплотехнической эффективности фрагментов стен, первый был изготовлен по технологии, полностью исключающей заполнение пустот раствором, то есть по технологии, соответствующей кладке из полнотелого кирпича. Расход раствора составлял 0,23 м 3. Второй и третий фрагменты изготовлены, соответственно, с расходом раствора 0,3 м 3 и 0,4 м 3 на один кубический метр кладки, то есть с частичным заполнением пустот. Плотность кладки из пустотелого кирпича плотностью 1000 кг/м 3 соответственно составляла 1180 кг/м 3. 1310 кг/м 3 и 1490 кг/м 3. Из пустотелого кирпича плотностью 1400 кг/м 3 плотность повысилась до 1492 кг/м 3. 1618 кг/м 3 и 1798 кг/м 3.

Коэффициент теплопроводности кирпичной кладки

Для приобретения равновесного влажностного состояния, соответствующего воздушно-сухому, в климатической камере до испытаний при tB =20 o C, φB =40% фрагменты выдерживали в специальном помещении. Поскольку для наступления стационарных условий диффузии водяного пара требуется продолжительное время, то исследования в климатической камере проводили в течение трех месяцев при tH =-20 o С, tB =20 o С. Пробы материалов для определения влажности отбирали в соответствии с расходом на 1 м 3 стены. То есть при расходе раствора 0,23 м 3 это соотношение составляло 1:3 (одна часть раствора:три части керамики), при 0,3 м 3 принималось 1:2, а при 0,4 м 3 соответственно 1:1,5. В кладке, выполненной с расходом раствора 0,23 м 3. влажность керамики с 0,2% в воздушно-сухом состоянии увеличилась до 1,2% с максимальным значением 2,2% на расстоянии 0,33 толщины стены от наружной поверхности. Влажность раствора в этом месте составляет 5,4% при среднем значении 3,3%. Среднее массовое отношение влажности кладки составило 1,8% при максимальном значении 3,8 %. При увеличении расхода раствора до 0,3 м 3 на 1 м 3 кладки из пустотелого кирпича среднее значение влажности кладки составляет 2,3%, при расходе раствора 0,4 м 3 влажность кладки повысилась до 2,9% (рис. 2). В двух последних случаях среднее массовое отношение влажности, соответственно, на 15% и 45% превышало нормативное значение, равное 2%. Во всех трех случаях массовое отношение влаги (максимальное и среднее значения) цементно-известково-песчаного раствора в кладке почти не увеличивается и, тем более, не уменьшается. Среднее же значение влажности кладки растет в большем темпе, чем влажность раствора. Это, очевидно, связано со способностью раствора отдавать сверхсорбционную влагу керамике контактным путем и восполнять потерянное количество за счет диффузии водяного пара из теплого помещения.

Теплопроводность кладки из пустотелого кирпича с диапазоном значений плотности 1000-1400 кг/м 3. в который практически укладывается почти весь выпускаемый нашей промышленностью пустотелый кирпич, при расходе раствора 0,23 м 3 в сухом состоянии находится в пределах от 0,26 до 0,41 Вт/(м* o С). Различие не превышает 16%.

Коэффициент теплопроводности кирпичной кладки

При увеличении расхода раствора до 0,3 м 3 плотность кладки, например, из пустотелого кирпича ϒ=1000 кг/м 3 возрастает с 1180 кг/м 3 до 1310 кг/м 3. При расходе раствора 0,4 м 3 плотность кладки повышается до 1490 кг/м 3. Среднее значение влажности кирпичной кладки изменяется с 1,8% соответственно до 2,3% и 2,9%. Такое изменение влажности и плотности приводит к повышению коэффициента теплопроводности стены с 0,43 до 0,54 Вт/(м* o С) и 0,59 Вт/(м* o С), то есть соответственно на 25,6% и 37,2%. При плотности кирпича 1400 кг/м 3 в результате увеличения расхода раствора до 0,3 м 3 и 0,4 м 3 коэффициент теплопроводности кирпичной стены возрастает с 0,56 Вт/(м* o С) до 0,65 и 0,70 Вт/(м* o С), то есть на 16% и 25,0%. Более существенное увеличение теплопроводности кирпичной стены из пустотелого кирпича плотностью 1400 кг/м 3 происходит при применении цементно-песчаного кладочного раствора плотностью 2000 кг/м 3. при том же расходе раствора, равном 0,3 м 3 и 0,4 м 3. значение коэффициента теплопроводности увеличивается до 0,74 Вт/(м* o С и 0,77 Вт/(м* o С), то есть на 27,6% и 32,8%. Это приводит также и к увеличению плотности кладки (рис. 3, табл.). Вместе с тем следует отметить, что наличие кладочного цементно-известково-песчаного раствора плотностью 1800 кг/м 3 в пустотах кирпичей оказывает меньшее влияние на увеличение коэффициента теплопроводности стены, чем увеличение его влажности. Это обусловливается рыхлым состоянием раствора в пустотах, находящегося в виде частиц (комочков) неправильной формы, разделенных воздушными мелкими полостями. Плотность раствора в рыхлом виде составляет 1200-1400 кг/м 3 и приблизительно равна плотности примененного пустотелого керамического кирпича (у брутто).

Кроме того, попавший в пустоты раствор разделил крупную воздушную полость на несколько воздушных прослоек, каждая из которых в результате полного прекращения передачи теплоты конвекцией обладает дополнительным термическим сопротивлением в стене. Созданное изменение условий теплопередачи в какой-то степени компенсирует влияние лишнего раствора на снижение теплозащитных качеств кирпичных стен из пустотелого кирпича. Заметно худшие влажностные условия складываются в пустотах в результате применения кладочного тяжелого раствора плотностью 2000-2200 кг/м 3. особенно при повышенной консистенции. Жидкий раствор легко проникает в пустоты, оседает внизу в «литом» виде. Плотность, влажность и теплопроводность тяжелого раствора в воздушной прослойке практически не отличается от теплофизических параметров раствора, находящегося в горизонтальных швах кладки. Влажность тяжелого раствора в кирпичной кладке может повышаться до 6-8%, что изменяет влажность и теплопроводность стены на 30-40%. Проваливание кладочного раствора в пустоты создает для каменщиков большие проблемы в создании равной растворной постели в горизонтальных швах кладки. Провалившийся раствор образует разрывы в горизонтальных швах, создающие благоприятные условия для циркуляции воздуха в пустотах. Созданная таким способом продольная фильтрация воздуха снижает теплотехническую эффективность пустотелых керамических стеновых и лицевых материалов. В целях исключения условий для попадания кладочного раствора в пустоты и создания ровного горизонтального шва без разрывов в ОАО «Победа ЛСР» принято к продаваемой крупноформатной пустотелой керамической продукции в обязательном порядке прилагать сетки с ячейками размером не более 10 х 10 мм для прокладки в горизонтальных растворных швах.

Повышенная плотность и влагопоглощаю-щая способность кладочного раствора в условиях эксплуатации наружных стен зданий значительно снижают заложенные на заводе теплозащитные свойства кирпича. Отрицательное воздействие тяжелого цемент-но-песчаного раствора может превышать теплотехнический эффект, получаемый от рационального расположения пустот и по-ризации керамики. Поэтому кладку из пустотелого кирпича с поризованной керамикой следует выполнять на легких (теплых) растворах с пониженной влагопоглощающей способностью, достигаемой введением гид-рофобизирующих добавок. В зарубежной строительной практике при возведении стен руководствуются принципом соответствия теплотехнических свойств кладочного раствора теплотехнической эффективности кирпича. Отечественной промышленностью для этих целей освоен выпуск широкой номенклатуры теплых кладочных растворов плотностью от 1600 до 500 кг/м 3. с теплопроводностью от 0,81 до 0,21 Вт/(м* o С). На строительном рынке в большом объеме представлена аналогичная продукция и зарубежных фирм. Отмеченные выше отличия теплофизических свойств кирпичной кладки, выполненной из одинакового кирпича, но на растворах с отличающимися физическими параметрами, создают определенные трудности в построении объективной зависимости коэффициента теплопроводности от плотности. Тем не менее, эта зависимость используется во многих зарубежных странах. В некоторых странах ее устанавливают в зависимости от плотности кладки. Если устанавливают зависимость теплопроводности от плотности кирпича, то указывают конкретные характеристики применяемого кладочного раствора. В отечественной строительной практике, начиная с 1962 года, кладку выполняли на тяжелом растворе (СНиП НА. 7-62) [4]. Конкретного значения плотности и расхода раствора на кубический метр кладки не указывалось. В связи с отсутствием информации о конкретной плотности раствора, значение коэффициентов теплопроводности кирпичных кладок, приведенных в нормативном документе, в настоящее время нельзя воспринимать однозначно, так как категория «тяжелых растворов» охватывает диапазон плотностей от 1700 до 2200 кг/м 3 с различием А до 40-50%.

Конечно, можно было бы сегодня признать, что приведенные данные соответствуют кладкам, выполненным на растворе плотностью 1800 кг/м 3. если бы в последующей редакции СНиП И-А. 7-71 [5] ко всем кирпичным кладкам плотностью от 1000 до 1800 кг/м 3 с теми же значениями коэффициентов теплопроводности не сделали уточнение, что они выполняются на любом растворе. В редакции СНиП II-3-79 [6] значения А для кладок из пустотелого кирпича сохранены полностью. Но к каждой плотности кладки добавлена информация по плотности кирпича. Что касается слов «на любом растворе» или «тяжелом растворе» их заменили «на цементно-песчаном растворе» без указания плотности. В последующих изданиях СНиП 11-3-79 в 1982 году и в 1998 году эти данные сохранены. Они перешли и в СП 23-101-2004 [7] и отражают свойства, как и в 1962 году, трех типов пустотелого кирпича.

Такой неконкретный подход к нормированию коэффициента теплопроводности керамического кирпича и камня в какой-то степени был терпим до 1980 года и даже до 1990 года, поскольку объем пустотелого кирпича в общем производстве керамических материалов не превышал 0,5%. В настоящее время его доля приблизилась к 80%. А номенклатура расширилась до 50 наименований. Заводы освоили новые технологии и перешли на более качественный уровень производства керамических изделий из пористой керамики в виде кирпичей высокой морозостойкости, крупноформатных камней, соответствующих по объему от 4 до 15 условных кирпичей. Это позволило при выполнении кладок из некоторых типов камней в несколько раз снизить расход раствора. Использование пористой керамики, рациональное расположение пустот в кирпичах при большом разнообразии их формы позволили существенно улучшить теплотехнические свойства кирпича.

В нормативных документах и СП 23-101-2004 [7] теплотехнические свойства современной керамической продукции до настоящего времени не нашли отражения. Имеющиеся данные по трем типам пустотелых кирпичей не могут быть использованы, так как размер пустот в них не соответствует утвержденным параметрам в ГОСТ 530-95. Поэтому были проанализированы данные 70 заводов по теплопроводности выпускаемых кирпича и камней, полученные при испытаниях в аккредитованных лабораториях без заполнения пустот. Полученные статистически обработанные данные приведены на рис. 4.

По отмеченным выше причинам, приведенные на рис. 4 данные по теплопроводности кладки из пустотелого кирпича плотностью 1000-1400 кг/м 3. выполненной без заполнения пустот раствором, несколько ниже данных, приведенных в СНиП по строительной теплотехнике с частичным заполнением пустот раствором, перешедших в дальнейшем в СП 23-101-2004 [7]. Некоторые различия в теплопроводности наблюдаются и в сравнении с зарубежными данными. Например, кладки из крупноформатных камней с поризованной керамикой, выпущенных в России, имеют более высокие значения коэффициентов теплопроводности.

Информация о теплотехнических свойствах кладок из различных типов кирпичей, которой будет обладать производитель, позволит и заказчику выбирать устраивающую его продукцию или ставить перед заводом вопрос о выпуске кирпича с уменьшенными размерами пустот и повышенными теплозащитными свойствами. Дополнительные затраты заказчика на освоение производства пустотелого кирпича или камня с улучшенными теплотехническими свойствами окупятся при строительстве за счет снижения расхода цемента до 50-100 кг на один кубический метр кладки стены.

Используемая литература

  1. ГОСТ 530-80. Кирпич и камни керамические. Технические условия. М. 1980.
  2. ГОСТ 530-95. Кирпич и камень керамический. Общие технические условия. М. 1995.
  3. ГОСТ 530-2007. Кирпич и камень керамические. Общие технические условия. М. 2007.
  4. СНиП II-A. 7-62. Строительная теплотехника. Нормы проектирования. М. 1963.
  5. СНиП II-A. 7-71 .Строительная теплотехника. Нормы проектирования. М. 1971.
  6. СНиП II-3-79. Строительная теплотехника. Нормы проектирования. М. 1979.
  7. СП 23-101-2004. Проектирование тепловой защиты зданий. М. 2004.

A. И. Ананьев. НИИСФ РААСН
B. П. Абарыков. Минмособлстрой
C. А. Бегоулев. А.С. Буланый ОАО «Победа ЛСР»
Журнал «Технологии строительства» 4(66)/2009

Источники: http://kirpichmaster.ru/vidy/teploprovodnost-kirpicha.html, http://pluskirpich.ru/steny/teploprovodnost-kladki.html, http://www.germostroy.ru/art_939.php

kirpich-sbm.ru

Виды кирпичей

Раньше этот материал выпускался двух видов: белый (силикатный) и красный (керамический) полнотелый. Иногда встречался керамический пустотелый. Современные керамические кирпичи бывают разных цветов и оттенков: желтые, кремовые, розовые, бордовые. Фактура их также может быть различной. Однако, по способу изготовления и составу они по-прежнему подразделяются на керамический и силикатный.

Общего у них, кроме геометрических параметров, нет ничего. Керамический состоит из обожженной глины (с различными добавками), а силикатный изготавливается из извести, кварцевого песка и воды. Эксплуатационные характеристики обоих видов регламентируются разными нормативными документами, что обязательно учитывается в строительной отрасли.

Большей популярностью пользуется керамический кирпич. Его разновидности: полнотелый, пустотелый, облицовочный с различной фактурой поверхности. Свойства этого строительного материала и его эстетические качества, разнообразие цветов и форм делают его уникальным и пригодным для возведения любых строений.

Назначение кирпичей различных видов и их отличительные признаки

Кирпич по назначению подразделяют на специальный, строительный и облицовочный. Для кладки стен применяется строительный, для облагораживания фасадов – облицовочный, а в особых случаях – специальный (например, для кладки печи, камина или печной трубы).

Полнотелый кирпич содержит не более 13% пустот: его используют для возведения стен (внешних и внутренних), столбов, колонн и так далее. Конструкции, построенные из такого материала, способны нести дополнительную нагрузку благодаря высокой прочности на сжатие, на изгиб, хорошей морозостойкости керамического полнотелого кирпича. Теплоизолирующие свойства зависят от пористости, от нее же зависит и водопоглощение, способность материала к сцеплению с кладочным раствором. Данный материал обладает не слишком хорошим сопротивлением к теплопередаче, в связи с чем стены жилых строений необходимо сооружать достаточной толщины или утеплять дополнительно.

У пустотелого кирпича объем пустот может доходить до 45% от общего объема изделия, поэтому его вес меньше, чем у полнотелого. Он пригоден для строительства легких перегородок и наружных стен, им заполняют каркасы многоэтажных зданий. Пустоты в нем могут быть как сквозными, так и закрытыми с какой-либо стороны. Форма пустот бывает круглой, квадратной, овальной, прямоугольной. Располагаются они вертикально и горизонтально (последний вариант менее удачен, так как такая форма – менее прочна).

У пустотелого кирпича объем пустот может доходить до 45% от общего объема изделия.

Пустоты позволяют экономить довольно много материала, из которого изготавливают кирпич. Кроме того, это значительно повышает его теплоизолирующие свойства. При этом важно, чтобы консистенция раствора была такой густоты, чтобы воздушные полости им не заполнялись.

Облицовочный кирпич применяют, соответственно, для облицовки зданий. Обычно, его размеры такие же, что и у стандартного, но в продаже есть и изделия с меньшей шириной. Чаще всего он изготавливается пустотелым, что определяет его высокие теплотехнические характеристики.

Среди специальных кирпичей чаще всего распространены огнеупорный (печной) и теплоизолирующий. И тот, и другой применяются для возведения каминов и печей (в том числе и мартеновских). Они изготавливаются из специальной, шамотной глины, но имеют разное назначение. Огнеупорный призван выдерживать температуры, превышающие 1600 °С, а теплоизолирующий – для предотвращения нагревания внешних стенок печей и потери тепла. Если возводить стены из этого материала, то они будут хорошо сохранять тепло. Но слабая прочность материала позволяет лишь заполнять им простенки.

Клинкерным кирпичом облицовывают цоколи зданий. Он обладает высокой морозостойкостью и механической прочностью благодаря применению тугоплавких глин при их изготовлении. Обжигание сырца производится при более высоких температурах, чем обычно.

Что такое теплопроводность

Этот термин обозначает способность материала передавать тепловую энергию. Эту способность, в данном случае, выражает коэффициент теплопроводности кирпича. У клинкерного этот показатель составляет порядка 0,8… 0,9 Вт/м К.

Силикатный обладает меньшей теплопроводностью и в зависимости от количества пустот, в нем содержащихся, подразделяется на: щелевой (0,4 Вт/м К), с техническими пустотами (0, 66 Вт/м К), полнотелый (0,8 Вт/м К).

Керамический является еще более легким, вследствие чего данный показатель у него еще более низкий. Для полнотелого кирпича он находится в пределах 0,5… 0,8 Вт/м К, для щелевого – 0,34… 0,43 Вт/м К и для поризованного – 0,22 Вт/м К. Кирпич пустотелый характеризуется коэффициентом теплопроводности, равным 0,57 Вт/м К. Данный показатель не постоянен и меняется в зависимости от пористости материала, количества и расположения пустот.

Утверждение, что кирпич обладает высокой теплопроводностью, не совсем корректно: некоторые виды этого материала проводят тепло даже хуже, чем газобетонные блоки. Сочетание прочностных качеств полнотелых кирпичей и теплоизолирующих свойств пустотелых (а еще лучше – поризованной керамики) позволяет возводить надежные и энергоэкономичные здания.

abisgroup.ru

Исторически в строительстве кирпич применяется очень давно, современная популярность этого материала частично объяснима доверием к нему со стороны застройщиков. Ведь при упоминании стены в подсознании у многих отражается лишь её исполнение в кирпиче. В современном мире этот искусственный керамический материал вовсе не собирается сдавать свои позиции, а лишь расширяет ассортимент и улучшает свои свойства.

Однако, постоянное удорожание энергоносителей вынуждает даже неспециалистов пристально рассматривать любые материалы на вопрос теплопотерь. Ниже мы составили для вас таблицу, в которой рассмотрели особенности каждого вида керамического кирпича и их теплопроводность.

Основные виды керамического кирпича:

Подвид материала Сфера применения и особенности Коэффициент теплопроводности Вт/м∙°С
Полнотелый Применяется при возведении любого типа стен, преимущественно применяют для несущих колонн, стен и перегородок, большой выбор марок прочности позволяет использовать его в наиболее ответственных конструкциях. В этот класс входят и материалы с техническими пустотами, что обеспечивают прочность кладки. 0,5-0,8
Пустотелый (щелевой и поризованный) В этом виде кирпича, для повышения теплоизоляционных свойств предусмотрены каналы или отверстия различной формы. 0,22-0,43
Огнеупорный Находит своё применение при возведении элементов, что могут подвергаться воздействию открытого пламени и высокой температуры – до 1400-1800 °С, в промышленном производстве он незаменим. Разумеется в жилом строительстве температура огня в топке редко превышает 800 °С и применяются менее стойкие марки шамотного кирпича. 0,5-1,28
Лицевой Полнотелый кирпич предполагает его дальнейшую отделку, так как нормы его производства допускают небольшие неровности, изменения в фактуре и цвете. Для сохранения естественной красоты кирпичной кладки используют облицовочный кирпич, лишённый этих недостатков. В его линейке также есть много декоративных и доборных элементов с радиальными закруглениями. 0,36-0,52
Клинкер Вершина развития керамики фасадных облицовочных материалов проверенная временем, производится из глины, что проходит несколько стадий обжига. Обладает стойкостью к воздействию щелочей и кислот, малопроницаем для влаги, поэтому выдерживать большое количество циклов «замерзания-оттаивания» — имеется в ввиду изменений сезонов зима-весна. Обычно производителями гарантируется около 100-300 циклов, что подразумевает беспроблемную эксплуатацию столько же лет. 0,8-0,9

 

Не стоит полагать, что виды этих стеновых материалов не могут сочетаться: ведь в одно и то же время облицовочный кирпич может быть и пустотелым, и это не уменьшит несущую способность элементов выполненных из него, а лишь уменьшит теплопроводность ограждающих конструкций и сохранит комфортную температуру в вашем доме.

Смотрите также: Стандартный размер красного кирпича, Вес 1 м3 кирпичной кладки, Вес силикатного кирпича, Таблица теплопроводности утеплителей

silastroy.com


Categories: Виды

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.