Расчет кирпичной стены на устойчивость

Прежде чем приступить к рассмотрению вопросов, связанных с расчетом толщины кирпичной стены дома, необходимо понимать, для чего это нужно. Например, почему нельзя возвести наружную стену толщиной в полкирпича, ведь кирпич такой твердый и прочный?

Очень многие неспециалисты не имеют даже базовых представлений о характеристиках ограждающих конструкций, тем не менее, берутся за самостоятельное строительство.

В этой статье мы рассмотрим два основных критерия расчета толщины кирпичных стен – несущие нагрузки и сопротивление теплопередаче. Но прежде чем погрузиться в скучные цифры и формулы, позвольте разъяснить некоторые моменты простым языком.

Стены дома в зависимости от их места в схеме проекта могут быть несущими, самонесущими, ненесущими и перегородками. Несущие стены выполняют ограждающую функцию, а также служат опорами плитам или балкам перекрытия или конструкции крыши. Толщина несущих кирпичных стен не может быть менее чем в один кирпич (250 мм).
льшинство современных домов строится со стенами в один или 1,5 кирпича. Проектов частных домов, где бы требовались стены толще 1,5 кирпича, по логике вещей не должно существовать. Поэтому выбор толщины наружной кирпичной стены по большому счету – дело решенное. Если выбирать между толщиной в один кирпич или в полтора, то с чисто технической точки зрения для коттеджа высотой 1-2 этажа кирпичная стена толщиной 250 мм (в один кирпич марки прочности М50, М75, М100) будет соответствовать расчетам несущих нагрузок. Перестраховываться не стоит, поскольку расчеты уже учитывают снеговые, ветровые нагрузки и множество коэффициентов, обеспечивающих кирпичной стене достаточный запас прочности. Однако есть очень важный момент, действительно влияющий на толщину кирпичной стены – устойчивость.

Все когда-то в детстве играли кубиками, и замечали, что чем больше поставить кубиков друг на друга, тем менее устойчивой становится колонна из них. Элементарные законы физики, действующие на кубики, точно так же действуют и на кирпичную стену, ибо принцип кладки один и тот же. Очевидно, что между толщиной стены и ее высотой есть некая зависимость, обеспечивающая устойчивость конструкции. Вот об этой зависимости мы и поговорим в первой половине этой статьи.

Устойчивость стен, равно как и строительные нормативы несущих и прочих нагрузок, подробно описана в СНиП II-22-81 «Каменные и армокаменные конструкции». Эти нормативы являются пособием для конструкторов, и для «непосвященных» могут показаться довольно сложными для понимания. Так оно и есть, ведь чтобы стать инженером, необходимо учиться минимум четыре года. Тут можно было бы сослаться на «обращайтесь за расчетами к специалистам» и ставить точку. Однако, благодаря возможностям информационной паутины, сегодня почти каждый при желании может разобраться в самых сложных вопросах.


Для начала попробуем разобраться в вопросе устойчивости кирпичной стены. Если стена высокая и длинная, то толщины в один кирпич будет мало. В то же время, лишняя перестраховка может повысить стоимость коробки в 1,5-2 раза. А это сегодня деньги немалые. Чтобы избежать разрушения стены или лишних финансовых трат обратимся к математическому расчету.

Все необходимые данные для расчета устойчивости стены имеются в соответствующих таблицах СНиП II-22-81. На конкретном примере рассмотрим, как определить, достаточна ли устойчивость наружной несущей кирпичной (М50) стены на растворе М25 толщиной в 1,5 кирпича (0,38 м), высотой 3 м и длиной 6 м с двумя оконными проемами 1,2×1,2 м.

Таблица 26 СНиП II-3-79

 Обратившись к таблице 26 (табл. вверху), находим, что наша стена относится к I-ой группе кладки и подходит под описание пункта 7 данной таблицы.
льше нам надо узнать допустимое соотношение высоты стены к ее толщине с учетом марки кладочного раствора. Искомый параметр β является отношением высоты стены к ее толщине (β=Н/h). В соответствии с данными табл. 28 β = 22. Однако наша стена не закреплена в верхнем сечении (иначе расчет требовался только по прочности), поэтому согласно п. 6.20 значение β следует уменьшить на 30%. Таким образом, β равно уже не 22, а 15,4. 

Таблица устойчивости стен

Переходим к определению поправочных коэффициентов из таблицы 29, которая поможет найти совокупный коэффициент k:

  •  для стены толщиной 38 см, не несущей нагрузки, k1=1,2; 
  •  k2=√Аn/Аb, где An – площадь горизонтального сечения стены с учетом оконных проемов, Аb – площадь горизонтального сечения без учета окон. В нашем случае, An= 0,38×6=2,28 м², а Аb=0,38×(6-1,2×2)=1,37 м². Выполняем вычисление: k2=√1,37/2,28=0,78; 
  •  k4 для стены высотой 3 м равен 0,9. 

Путем перемножения всех поправочных коэффициентов находим общий коэффициент k= 1,2×0,78×0,9=0,84. После учета совокупности поправочных коэффициентов β=0,84×15,4=12,93. Это означает, что допустимое соотношение стены с требуемыми параметрами в нашем случае составляет 12,98. Имеющееся соотношение H/h = 3:0,38 = 7,89. Это меньше допустимого отношения 12,98, и это означает, что наша стена будет достаточно устойчивой, т.к. выполняется условие H/h<β.


Согласно пункту 6.19 должно быть соблюдено еще одно условие: сумма высоты и длины (H+L) стены должна быть меньше произведения 3kβh. Подставив значения, получим 3+6=9<3×0,84×15,4×0,38=14,7. Условие соблюдено с большим запасом. Проведите самостоятельно расчет устойчивости аналогичной стены, но толщиной в один кирпич (0,25 м), и узнайте, будет ли ее устойчивость допустимой.

 

 

Толщина кирпичной стены и нормы сопротивления теплопередаче

Сегодня подавляющее число кирпичных домов имеют многослойную конструкцию стен, состоящую из облегченной кирпичной кладки, утеплителя и фасадной отделки. Согласно СНиП II-3-79 (Строительная теплотехника) наружные стены жилых зданий с потребностью 2000°С/сут. должны обладать сопротивлением теплопередаче не менее 1,2 м²•°С/Вт. Чтобы определить расчетное тепловое сопротивление для конкретного региона, необходимо учесть сразу несколько местных температурных и влажностных параметров. Для исключения ошибок в сложных подсчетах, предлагаем следующую таблицу, где показано требуемое тепловое сопротивление стен для ряда городов России, расположенных в разных строительно-климатических зонах согласно СНиП II-3-79 и СП-41-99.


Нормативное тепловое сопротивление стен домов

Город СНиП II-3-79 и СП-41-99 СНиП II-3-79
Москва 3 1,26
Архангельск 3,4 1,4
Воронеж 2,97 1,26
Астрахань 2,36 1,78
Волгоград 2,8 1,23
Екатеринбург 3,41 1,52
Казань 3,23 1,43
Иркутск 3,67 1,58
Н. Новгород 3,15 1,37
Мурманск 3,5 1,29
Оренбург 3,32 1,46
Ставрополь 2,36 1,06

 

 

Сопротивление теплопередаче R (термическое сопротивление, м²•°С/Вт) слоя ограждающей конструкции определяется по формуле:

R=δ/λ, где

δ – толщина слоя (м), λ – коэффициент теплопроводности материала Вт/(м•°С).


Чтобы получить общее термическое сопротивление многослойной ограждающей конструкции, необходимо сложить термические сопротивления всех слоев структуры стены. Рассмотрим следующее на конкретном примере.

Задача состоит в том, чтобы определить, какая толщина должна быть у стены из силикатного кирпича, чтобы ее сопротивление теплопроводности соответствовало СНиП II-3-79 для наиболее низкого норматива 1,2 м²•°С/Вт. Коэффициент теплопроводности силикатного кирпича составляет 0,35-0,7 Вт/(м•°С) в зависимости от плотности. Допустим наш материал имеет коэффициент теплопроводности 0,7. Таким образом, получаем уравнение с одной неизвестной δ=Rλ. Подставляем значения и решаем: δ=1,2×0,7=0,84 м.

Теперь вычислим, каким слоем пенополистирола нужно утеплить стену из силикатного кирпича толщиной 25 см, чтобы выйти на показатель 1,2 м²•°С/Вт . Коэффициент теплопроводности пенополистирола (ПСБ 25) не более 0,039 Вт/(м•°С), а у силикатного кирпича 0,7 Вт/(м•°С).

1) определяем R кирпичного слоя: R=0,25:0,7=0,35;

2) вычисляем недостающее тепловое сопротивление: 1,2-0,35=0,85;

3) определяем толщину пенополистирола, необходимую для получения теплового сопротивления равного 0,85 м²•°С/Вт: 0,85×0,039=0,033 м.


Таки образом, установлено, что для приведения стены в один кирпич к нормативному тепловому сопротивлению (1,2 м²•°С/Вт) потребуется утепление слоем пенополистирола толщиной 3,3 см.

Используя данную методику, вы сможете самостоятельно рассчитывать тепловое сопротивление стен с учетом региона строительства.

www.domastroim.su

Чтобы выполнить расчет стены на устойчивость, нужно в первую очередь разобраться с их классификацией (см. СНиП II-22-81 «Каменные и армокаменные конструкции», а также пособие к СНиП) и понять, какие бывают виды стен:

1. Несущие стены — это стены, на которые опираются плиты перекрытия, конструкции крыши и т.п. Толщина этих стен должна быть не менее 250 мм (для кирпичной кладки). Это самые ответственные стены в доме. Их нужно рассчитывать на прочность и устойчивость.

2. Самонесущие стены — это стены, на которые ничто не опирается, но на них действует нагрузка от всех вышележащих этажей. По сути, в трехэтажном доме, например, такая стена будет высотой в три этажа; нагрузка на нее только от собственного веса кладки значительная, но при этом очень важен еще вопрос устойчивости такой стены — чем стена выше, тем больше риск ее деформаций.


3. Ненесущие стены — это наружные стены, которые опираются на перекрытие (или на другие конструктивные элементы) и нагрузка на них приходится с высоты этажа только от собственного веса стены. Высота ненесущих стен должна быть не более 6 метров, иначе они переходят в категорию самонесущих.

4. Перегородки — это внутренние стены высотой менее 6 метров, воспринимающие только нагрузку от собственного веса.

Разберемся с вопросом устойчивоcти стен.

Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.

 

Теперь возьмем наихудший вариант: тонкую тетрадь большого формата и поставим на ребро — она не просто потеряет устойчивость, но еще и изогнется. Так и стена, если не будут соблюдены условия по соотношению толщины и высоты, начнет выгибаться из плоскости, а со временем — трещать и разрушаться.

Что нужно, чтобы избежать такого явления? Нужно изучить п.п. 6.16…6.20 СНиП II-22-81.


Расчет кирпичной стены на устойчивость

Расчет кирпичной стены на устойчивость

Расчет кирпичной стены на устойчивость

Расчет кирпичной стены на устойчивость

Рассмотрим вопросы определения устойчивости стен на примерах.

Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.

Из таблицы 26 (п. 2) определяем группу кладки — III. Из таблицы 28 находим ? = 14. Т.к. перегородка не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 9,8.


Находим коэффициенты k из таблицы 29:

k1 = 1,8 — для перегородки, не несущей нагрузки при ее толщине 10 см, и k1 = 1,2 — для перегородки толщиной 25 см. По интерполяции находим для нашей перегородки толщиной 20 см k1 = 1,4;

k3 = 0,9 — для перегородки с проемами;

значит k = k1k3 = 1,4*0,9 = 1,26.

Окончательно β = 1,26*9,8 = 12.3.

Найдем отношение высоты перегородки к толщине: H/h = 3,5/0,2 = 17,5 > 12.3 — условие не выполняется, перегородку такой толщины при заданной геометрии делать нельзя.

Каким способом можно решить эту проблему? Попробуем увеличить марку раствора до М10, тогда группа кладки станет II, соответственно β = 17, а с учетом коэффициентов β = 1,26*17*70% = 15 < 17,5 — этого оказалось недостаточно. Увеличим марку газобетона до М50, тогда группа кладки станет I, соответственно β = 20, а с учетом коэффициентов β = 1,26*20*70% = 17.6 > 17,5 — условие выполняется. Также можно было не увеличивая марку газобетона, заложить в перегородке конструктивное армирование согласно п. 6.19. Тогда β увеличивается на 20% и устойчивость стены обеспечена.

Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.

Из таблицы 26 (п. 7) определяем группу кладки — I. Из таблицы 28 находим β = 22. Т.к. стена не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 15,4.

Находим коэффициенты k из таблицы 29:

k1 = 1,2 — для стены, не несущей нагрузки при ее толщине 38 см;

k2 = √Аn/Ab = √1,37/2,28 = 0,78 — для стены с проемами, где Ab = 0,38*6 = 2,28 м2 — площадь горизонтального сечения стены с учетом окон, Аn = 0,38*(6-1,2*2) = 1,37 м2;

значит k = k1k2 = 1,2*0,78 = 0,94.

Окончательно β = 0,94*15,4 = 14,5.

Найдем отношение высоты перегородки к толщине: H/h = 3/0,38 = 7,89 < 14,5 — условие выполняется.

Необходимо также проверить условие, изложенное в п. 6.19:

Н + L = 3 + 6 = 9 м < 3kβh = 3*0,94*14,5*0,38 = 15.5 м — условие выполняется, устойчивость стены обеспечена.

 

Еще полезные статьи:

«Выбор материала для стен»

«Как подобрать перемычки в кирпичных стенах»

«Как подобрать перемычки в частном доме – примеры расчета.»

«Подбираем перемычки в кирпичных перегородках – примеры расчета. Проемы №1-3.»

«Подбираем перемычки в самонесущих кирпичных стенах — примеры расчета. Проемы №4-6.»

«Подбираем перемычки в несущих кирпичных стенах — примеры расчета. Проемы №7-11.»

«Как выполнить чертеж перемычек — схему перекрытия оконных и дверных проемов»

«Устройство металлической перемычки»

«Расчет кладки из газобетона на смятие под действием нагрузки от перекрытия.»

«Как пробить проем в существующей стене.»

 

Внимание! Для удобства ответов на ваши вопросы создан новый раздел «БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ».

svoydom.net.ua

30-09-2013: Доктор Лом

Когда речь идет о расчете элементов на центральное сжатие, то формулировка СНиП II-22-81 п.4.1 звучит так: "При меньшем размере прямоугольного поперечного сечения элементов h ? 30 см (или с меньшим радиусом инерции элементов любого сечения i ? 8,7 см) коэффициент mg следует принимать равным единице". А вот при расчетах внецентренно сжатых элементов, действительно п.4.7: "При h ? 30 см или i ? 8,7 см коэффициент mg следует принимать равным единице". Я намеренно воспользовался неточностью формулировки п.4.1 при расчете центрально сжатой колонны по ряду причин:
1. Коэффициент mg — это как бы дополнительная страховка, используемая при расчетах с минимальным запасом прочности. В данном примере расчет производился с достаточным запасом, что позволяет принимать значение mg =1.
2. Коэффициент mg = 1 — nNg/N (при центральном сжатии) — эмпирическая величина, значение которой даже при самых неблагоприятных обстоятельствах не может быть меньше 0.69 для кладки из глиняного кирпича (так как n не может быть больше 0.31) и если длительная нагрузка Ng равна общей нагрузке N. Пользоваться этой величиной нужно с пониманием. Например, если при ширине колонны 30 см допускается принимать mg = 1 даже при бесконечно большой длине колонны, то по логике при ширине 25 см значение mg не должно быть значительно меньше 1. Однако значение mg будет зависеть не только от ширины колонны, но и от расчетной длины и даже при ширине колонны, чисто теоретически равной 29.99 см, и при достаточно большой длине колонны mg может иметь указанное значение 0.69. Что формально правильно, но логически никак не обосновано.
3. Для определения коэффициента mg требуется предварительно определить соотношение длительной и постоянной нагрузки и определить значение расчетной длины. Это означает, что алгоритм расчета, и так не вполне простой и очевидный, следует еще более усложнить, расширить описание, добавить еще таблиц и формул, чтобы показать, что значение расчетной нагрузки может быть на 5-10% меньше. И все это нужно сделать до того, как сконцентрировать внимание читателя на самом главном — правильном определении расчетной длины и соответственно коэффициента продольного изгиба. Между тем при сборе нагрузок был использован достаточно большой запас, например, при определении временной нагрузки на перекрытие. И еще расчетную нагрузку можно было принять значительно меньше с учетом того, что максимальная нагрузка от снега и максимальная нагрузка на перекрытие в летнее время — это абсолютно разные во времени нагрузки. Таким образом указанный запас значительно перекрывает возможное уменьшение допустимой нагрузки на 5-10% при mg = 0.95-0.9. Для примера следующий возможный вариант: расчетная схема позволяет рассматривать колонну, как шарнирно закрепленную на опорах, в этом случае расчетная длина колонны равна реальной длине колонны, т.е. 300 см, при этом ?h = 300/25 = 12 и тогда значение коэффициента n составит n = 0.04 по таблице 20 СНиПа (в статье не приводится). Тогда, даже при равенстве длительной нагрузки и постоянной значение mg = 1 -0.04×1 = 0.96.
Возможно, мое понимание проблемы неправильно, именно поэтому я и рекомендую при расчетах руководствоваться СНиПом, а не данным примером расчета.
И еще. Таблица 2 позволяет определить значение коэффициента продольного изгиба без расчета радиуса инерции. К тому же расчет радиуса инерции никак не связан с определением коэффициента mg, учитывающего влияние длительной нагрузки.

doctorlom.com

Минимальная толщина стены из кирпича или блоков

Стены частных домов, коттеджей и других малоэтажных зданий делают, как правило, двух- трехслойными с утепляющим слоем. Слой утеплителя располагается на несущей части стены из кирпича или малоформатных блоков. Застройщики часто задаются вопросами:
«Можно ли сэкономить на толщине стены?».
«А не сделать ли несущую часть стены дома потоньше, чем у соседа или, чем предусмотрено проектом?

На строительных площадках и в проектах увидеть несущую стену из кирпича толщиной 250 мм. а из блоков — даже 200 мм. стало обычным делом.

Расчет кирпичной стены на прочность Стена оказалась слишком тонкой для этого дома.

Прочность стены дома определяется расчетом

Нормы проектирования (СНиП II-22-81 «Каменные и армокаменные конструкции») независимо от результатов расчета ограничивают минимальную толщину несущих каменных стен для кладки I группы в пределах от 1/20 до 1/25 высоты этажа.

Таким образом, при высоте этажа до 3 м. толщина стены в любом случае должна быть больше 120 — 150 мм .

На несущую стену действует вертикальная сжимающая нагрузка от веса самой стены и вышележащих конструкций (стен, перекрытий, крыши, снега, эксплуатационной нагрузки). Расчетное сопротивление сжатию кладки из кирпича и блоков зависит от марки кирпича или класса материала блоков по прочности на сжатие и марки строительного раствора.

Для малоэтажных зданий, как показывают расчеты, прочность на сжатие стены толщиной 200-250 мм из кирпича обеспечивается с большим запасом. Для стены из блоков, при соответствующем выборе класса блоков, проблем обычно также не бывает.

Кроме вертикальных нагрузок, на стену (участок стены) действуют горизонтальные нагрузки, вызванные, например, напором ветра или передачей распора от стропильной системы крыши.

Кроме этого, на стену действуют вращающие моменты, которые стремятся повернуть участок стены. Эти моменты связанны с тем, что нагрузка на стену, например, от плит перекрытий или вентилируемого фасада приложена не по центру стены, а смещена к боковым граням. Сами стены имеют отклонения от вертикали и прямолинейности кладки, что также приводит к возникновению дополнительных напряжений в материале стены.

Горизонтальные нагрузки и вращающие моменты создают изгибающую нагрузку в материале на каждом участке несущей стены.

Прочность, устойчивость стен толщиной 200-250 мм и менее, к этим изгибающим нагрузкам не имеет большого запаса. Поэтому, устойчивость стен указанной толщины для конкретного здания обязательно должна быть подтверждена расчетом.

Для строительства дома со стенами такой толщины необходимо выбирать готовый проект с соответствующими толщиной и материалом стен. Корректировку проекта с иными параметрами под выбранные толщину и материал стен обязательно поручаем специалистам.

Практика проектирования и строительства жилых малоэтажных домов показала, что несущие стены из кирпича или блоков толщиной более 350 — 400 мм. имеют хороший запас прочности и устойчивости, как к сжимающим, так и изгибающим нагрузкам, в подавляющем большинстве конструктивных исполнений здания.

Стены дома, наружные и внутренние, опирающиеся на фундамент, образуют совместно с фундаментом и перекрытием единую пространственную структуру (остов), которая совместно сопротивляется нагрузкам и воздействиям.

Создание прочного и экономичного остова здания — инженерная задача, требующая высокой квалификации, педантичности и культуры от участников строительства.

Дом с тонкими стенами более чувствителен к отклонениям от проекта, от норм и правил строительства.

Застройщику необходимо понимать, что прочность, устойчивость стен снижается, если:

  • уменьшается толщина стены;
  • увеличивается высота стены;
  • увеличивается площадь проемов в стене;
  • уменьшается ширина простенка между проемами;
  • увеличивается длина свободного участка стены, не имеющего подпора, сопряжения с поперечной стеной;
  • в стене устраиваются каналы или ниши;

Прочность, устойчивость стен меняется в ту или иную сторону если:

  • изменить материал стен;
  • изменить тип перекрытия;
  • изменить тип, размеры фундамента;

Дефекты, снижающие прочность, устойчивость стен

Нарушения и отступления от требований проекта, норм и правил строительства, которые допускают строители (при отсутствии должного контроля со стороны застройщика), снижающие прочность, устойчивость стен:

  • используются стеновые материал (кирпич, блоки, раствор) с пониженной прочностью по сравнению с требованиями проекта.
  • не выполняется анкеровка металлическими связями перекрытия (балок) со стенами согласно проекта;
  • отклонения кладки от вертикали, смещение оси стены превышают установленные технологические нормы;
  • отклонения прямолинейности поверхности кладки превышают установленные технологические нормы;
  • недостаточно полно заполняются раствором швы кладки. Толщина швов превышает установленные нормы.
  • чрезмерно много в кладке используются половинки кирпича, блоки со сколами;
  • недостаточная перевязка кладки внутренних стен с наружными;
  • пропуски сетчатого армирования кладки;

Застройщику необходимо во всех перечисленных выше случаях изменения размеров или материалов стен и перекрытий обязательно обращаться к профессионалам-проектировщикам для внесения изменений в проектную документацию. Изменения в проекте должны быть заверены их подписью.

Предложения вашего прораба типа «давай сделаем проще» обязательно должны быть согласованы с профессиональным проектировщиком. Контролируйте качество строительных работ, которые делают подрядчики, или при их выполнении собственными силами не допускайте указанных выше дефектов строительства.

Нормами правил производства и приемки работ (СНиП 3.03.01-87) допускается: отклонения стен по смещению осей (10 мм), по отклонению на один этаж от вертикали (10 мм), по смещению опор плит перекрытия в плане (6…8 мм) и пр.

Чем тоньше стены, тем более они нагружены, тем меньше у них запас прочности. Нагрузка на стену помноженная на «ошибки» проектировщиков и строителей может оказаться чрезмерной (на фото).

Процессы разрушения стены проявляются не всегда сразу, бывает — спустя годы после завершения строительства.

Советы застройщику

Толщину стен 200-250 мм из кирпича или блоков безусловно целесообразно выбрать для одноэтажного дома или для верхнего этажа многоэтажного.

Дом в два или три этажа с толщиной стен 200-250 мм. стройте при наличии в вашем распоряжении готового проекта, привязанного к грунтовым условиям места строительства, квалифицированных строителей, и независимого технического надзора за строительством.

В иных условиях для нижних этажей двух- трехэтажных домов надежнее стены толщиной не менее 350 мм .

О том, как сделать несущие стены толщиной всего 190 мм.. читайте здесь.

Уважаемый читатель!

В комментарии оцените полезность статьи.
Задайте вопрос по теме статьи, дополните, уточните или возразите автору.
Расскажите о том, как делаете Вы.
Комментарий будет опубликован через некоторое время, после одобрения. Спасибо за оставленный комментарий!

Минимальная толщина стены из кирпича или блоков: 3 комментария

добрый вечер, подскажите пожалуйста, как рассчитать нагрузку на кирпичную стену. Стена(кладка)в полкирпича, плюс штукатурка, хочу повесить на ней накопительный водонагреватель объемом 50 литров, общий вес примерно 65-70 кг, выдержит ли, без последствий, данную нагрузку и как это рассчитывается?

У меня держит уже год. Не ставить же его на пол.

Источники: http://oooalfa-pro.ru/stati-o-remonte/article_post/raschet-steny-na-prochnost, http://probuild-info.ru/primer-proverochnogo-rascheta-kirpichnogo-prostenka-na-prochnost/, http://domekonom.su/minimalnaya-tolschina-kamennoi-steny.html

kirpich-sbm.ru

Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена, нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях — остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (Мрз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

 

Пример расчета кирпичной стены.

Исходные данные: Рассчитать стену первого этажа двухэтажного коттеджа на прочность. Стены выполнены из кирпича М75 на растворе М25 толщиной h=250мм, длина стены L=6м. Высота этажа H=3м.

Решение.

Несущая способность кирпичной кладки зависит от многих факторов — от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности  начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

Пример:

 

 

Выбор расчетного сечения.

В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II, так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты mg и φ минимальны.

В стенах с проемами сечение принимается на уровне низа перемычек.

 

Давайте рассмотрим сечение I-I. 

Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P1=1,8т и вышележащих этажей G=Gп+P2+G2= 3,7т:

 

Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

Нагрузка от вышележащих этажей G считается приложенной по центру.

Так как нагрузка от плиты перекрытия (P1) приложена не по центру сечения, а на расстоянии от него равном:

 

 

то она будет создавать изгибающий момент (М) в сечении I-I. Момент — это произведение силы на плечо.

 

Статья была для Вас полезной? Поделитесь своим мнением в комментарии…

oooalfa-pro.ru

(ветровую) нагрузку

Методика расчета

Элементами здания, воспринимающими ветровую нагрузку, являются перекрытия, служащие опорами для наружных стен при действии на них ветра, и поперечные стены – вертикальные диафрагмы жесткости, являющиеся опорами для перекрытий.

Ветровую нагрузку разлагают на две взаимно перпендикулярные составляющие по направлению стен – вдоль и поперек здания, по которым проверяется прочность и устойчивость здания.

Методика расчета на продольную и поперечную ветровые нагрузки одна и та же. Однако для вытянутых в плане зданий наибольшую опасность представляет поперечная ветровая нагрузка, перпендикулярная к длинной стороне здания. Для того чтобы рассчитать поперечные стены, необходимо знать, какая часть ветровой нагрузки будет воспринята каждой стенкой.

Перекрытия рассматриваются как абсолютно жесткие (в своей плоскости) пластины, обеспечивающие неизменяемость контура здания в плане и совместную работу всех стен. Равнодействующая ветровой нагрузки W распределяется между отдельными стенами в зависимости от их размеров и положения в плане (рис.21).

Поперечные стены могут быть

расположены в плане симметрично относительно оси здания или несимметрично.

При симметричном размещении стен (рис.21,б) ветровая нагрузка распределяется между поперечными стенами прямо пропорционально их жесткостям. Симметричное расположение поперечных стен значительно упрощает расчет конструкции.

При несимметричном размещении поперечных стен (рис.21,в) равнодействующая усилий ∑Wi проходит на расстоянии ч от равнодействующей W

ветровой нагрузки. Равнодействующая W вызывает прогиб поперечных стен и создает крутящий момент.

Расчет кирпичной стены на устойчивость

Расчет кирпичной стены на устойчивость

Расчет кирпичной стены на устойчивость

Рис.21. Распределение ветровой нагрузки: а- по направлению поперечных и продольных стен; б- между поперечными стенами при симметричном их расположении в плане; в- то же, при несимметричной.

Согласно указаниям норм поперечные стены вместе с прилегающими участками продольных стен (рис.22), вводимыми в совместную работу, рассматриваются как вертикальные консоли двутаврового, таврового или швеллерного поперечного сечения, заделанные в грунт и работающие под влиянием давления ветра на изгиб (рис.22).

Интенсивность нормативного ωп и расчетного ω давлений ветра определяются по СниП 2.01.07-85 «Нагрузки и воздействия».

Расчет кирпичной стены на устойчивостьРасчет кирпичной стены на устойчивость

Расчет кирпичной стены на устойчивость

Рис.22. Расчетная схема каменного остова здания для расчета на ветер: а- рспределение нормальных напряжений в простенках продольных стен; б- вертикальный разрез, внешние силы и внутренние усилия, в- горизонтальный разрез с обозначениями.

Расчетное давление ветра на поперечную стену, передаваемое одним перекрытием на высоте Hi определяется по формуле:

W = ωi х hэт х ℓст ,

где hэт – высота этажа

ст – расстояние между поперечными стенами

Полное расчетное давление ветра ∑Wi , приходящееся на поперечную стену на уровне горизонтального сечения i –i , равно сумме расчетных ветровых давлений Wi , действующих выше рассматриваемого сечения. Так на уровне третьего этажа ( рис.22) полное расчетное давление

∑Wi = W3 + W4 + W5 + W6 +W7 +W8 = Qв.з.

Давление ветра вызывает в элементах каменного остова следующие усилия и напряжения.

  1. В горизонтальном сечении i –i по высоте здания давление ветра ∑Wi

создает расчетный изгибающий момент

МBi = ∑Wi х hi

  1. Этот момент разгружает продольную стену с наветренной стороны и догружает продольную стену с подветренной стороны, вызывая в простенках дополнительные вертикальные усилия Ni и напряжения σBi , определяемые по формулам

МBi х А х у Х

N Bi= ————— ( 1- —— );

I Si

N Bi

σBi = ———- ,

А

где hi – расстояние от точки приложения силы Wi до рассматриваемого

сечения;

А-площадь поперечного сечения простенка (см.рис.22);

у-расстояние от оси простенка до нейтральной оси сечения коробки

стен ( на рис.22 заштриховано в плане);

I –момент инерции сечения стен;

Х-расстояние от оси простенка до оси поперечной стены;

Si – расчетная длина участков продольных стен, вводимых в

совместную работу с поперечной стеной.

  1. Величины Si принимают:

  • для глухой стены Si = 0,8 h;

Абр

  • для стены с проемами Si = 0,7 ∑ hпр √ ——-,

Ант

где

  1. расстояние от верха поперечной стены до уровня рассчитываемого

сечения;

∑ hпр – суммарная высота горизонтальных поясов кладки между оконными

проемами от верха стены до рассчитываемого сечения;

Абр— площадь горизонтального сечения сплошной части продольной стены

на длине Si

  1. При включении в совместную работу поперечных и продольных стен

должно быть обеспечено восприятие сдвигающихся усилий в местах их взаимного примыкания, величина которых в пределах одного этажа определяется по формуле

Qв х Ант х у х Нэт

Тэт = ———————— ≤h х Hэт х Rs.q

I

где

Qв – расчетная поперечная сила от ветровой нагрузки в середине высоты

этажа

у – расстояние от оси продольной стены до оси, проходящей через центр

тяжести сечения стен в плане;

Iнт – момент инерции сечения относительно оси. проходящей через центр тяжести сечения стен в плане, для ширины s/2 в каждую сторону от оси поперечной стены.

  1. Давление ветра ∑Wi создает в горизонтальных сечениях поперечной

стены поперечную силу QBi = ∑Wi , которая вызывает в стене главные растягивающие напряжения.

QBi σ

σtg = —————-

a x в

Эти напряжения по величине не должны превышать расчетного сопротивления скалыванию, определяемого по формуле

Rtq = √ R (R + σо)

Здесь принято

Rtq — расчетное сопротивление скалыванию кладки, обжатой продольной

studfiles.net


Categories: Кладка

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector